

Run2b Workshop

Morning Agenda

- 10:00	Overview and Goals of this Workshop	J. Incandela, FNAL
	Accelerator	
- 10:10	Run 2a and Run 2b beam conditions	M.Martens, FNAL
	Run 2a	
- 10:45	Lifetime of Silicon	S. Worm, New Mexico
- 11:10	Radiation issues for DOIMs, CPC's	Y. Gotra, Pittsburgh
- 11:25	Tracker Performance Capability	A. Yagil, FNAL
- 11:40	Material & Effects on Tracking	D. Stuart, FNAL
- 12:00-1:	00 Lunch	

Run2b Workshop

Afternoon Agenda: Run 2b

		Sensor Replacement Technologies		
	- 1:00	Rad Hard Silicon R&D	N. Bacchetta, INFN Padova	
	- 1:25	Pixels	W. Wester, FNAL	
	- 1:50	Diamonds	J. Conway, Rutgers	
		Electronics and DAQ		
	- 2:10	Deep sub-µm: rad-hardness	N. Bacchetta, INFN Padova	
	- 2:40	Deep sub-µm: SVX3 issues	O. Milgrome, LBNL	
	- 3:15	Front-end/DAQ issues	W. Wester, FNAL	
	- 3:30	Hybrid Technologies	C. Haber, LBNL	
	- 3:45	Coffee Break		
•	4:00	Working Group Organization & Discussions		
•	5:30	Wrap-up: plans for convergence		

Overview and Goals

- Run 2 will be appreciated, (even by Fermilab management and the DOE), as a major opportunity
 - We must prepare to run and acquire high quality data until LHC experiments start really publishing physics
 - 2006, 2007, 2008 ?
 - We must maximize run time and lifetime
 - minimum shutdowns of ≤ 6 month each?
 - \geq 30 fb⁻¹, luminosity of 10^{33} ?
 - We need a strategy that
 - optimizes physics
 - doesn't paint us into a corner
 - is achievable at
 - reasonable cost
 - minimal schedule risk
 - no loss, and possibly some improvement, in performance

First Steps

This workshop

- Summarize the important things we know about the Run 2a detector and beam conditions for all of Run 2.
- Start addressing the most critical issues for Run 2b Si replacement.
- Form working groups to address remaining important questions

Tentative plan

- All speakers presenting today will provide electronic (Latex preferred) succinct summaries of their talks and related discussions.
 The proceedings of the workshop will be compiled into a CDF note.
- Working groups will choose leaders and address a list of critical issues either in subsequent meetings or by e-mail. We will then reconvene within a month to hear reports from all working groups.
- We will try to converge on a single consensus option and then follow this with a proposal. If no single option is agreed upon, then I expect several proposals could appear.
- Again, we will turn the proceedings into a CDF note.

Desired Outcomes

- Bring together all relevant information and make it widely accessible (1st CDF Note)
- Address tougher questions and better understand our Run 2b options. Make recommendation(s) if a consensus can be formed (2nd CDF Note)
- Follow through with proposal(s)
 - based on the right goals
 - taking into account the right resource expectations
 - detailing projects with very high probability of success

Working Groups

- Tentative list of groups
 - Sensor technologies
 - · micro-strips, pixels, diamonds
 - FE/DAQ
 - chips, hybrids, other readout components and DAQ
 - what chip options, hybrid designs, what to do about other components and what is the impact on the existing DAQ
 - Geometry
 - Layout for physics
 - acceptance, number of layers, stereo angles, material budget, track parameter resolutions, pattern recognition issues
 - Accelerator
 - what peak luminosities, what total integrated luminosities, what luminous region size?
 - What do we need, how can it be achieved?

Working Groups (2)

- Questions/Tasks (note in any particular order)
 - Overview of issues
 - Technical issues/risk
 - <u>Manpower</u>/expertise: needs/availability
 - Equipment & space requirements
 - Schedule
 - with contingency for greater than 90% success probability
 - Cost estimates
 - with significant contingency
- This should result in a careful analysis of pros and cons
 - · physics performance tracking
 - · lifetime
 - shutdown/downtime minimization
 - cost and schedule
 - ease of access, how easily replaced ?

Rough Guidelines

- First stab at guidelines & specifications
 - Material < 10% X_o for SVXII/L00 replacement (the less the better)
 - At least as good acceptance and hit information as in Run 2a
 - At least as good track parameter resolution " "
 - Similar or more simple pattern recognition " "
 - Maximum 5M\$ total cost
 - \leq 6 month shutdowns every ~10 fb⁻¹ or more
 - Simple construction, robust technologies and methods